:::
:::
資源分類
數學-國中7-9年級(四)
過濾條件

搜尋相關的資源 1,867
等差數列-資源代表圖
web 等差數列
蔡尚霖/市立銘傳國中國中8年級
等差數列題型練習
點閱數1040
下載數195
修改日期:2014-03-20
等差中項-資源代表圖
web 等差中項
陳柏瑋/市立銘傳國中國中8年級
等差中項之延伸運用
點閱數606
下載數19
修改日期:2014-03-04
樂高挑戰課程3(輪型機器人的馬達操控與程式設計)-資源代表圖
web 樂高挑戰課程3(輪型機器人的馬達操控與程式設計)
賴基正/縣立過嶺國中國小6年級~國中8年級
樂高課程融入領域教學
點閱數978
下載數35
修改日期:2013-12-17
樂高基礎課程(空間概念的建立)-資源代表圖
web 樂高基礎課程(空間概念的建立)
賴基正/縣立過嶺國中國小6年級~國中8年級
樂高課程融入領域教學
點閱數1049
下載數34
修改日期:2013-12-16
特教(錢幣加總.應用)-資源代表圖
web 特教(錢幣加總.應用)
陳曉婷/縣立綠島國中國小2年級~國中9年級
錢幣數數,應用題練習
點閱數4382
下載數481
修改日期:2013-11-29
地球周長測量-資源代表圖
web 地球周長測量
辜易天/鸞山國小國小6年級~國中9年級
埃拉托斯特尼(Eratosthenes),生於西元前276年的利比亞,他是一位數學家、地理學家、歷史學家、詩人、天文學家。他先在亞歷山大港學習,又在雅典幾年。西元前236年,托勒密三世指定他為亞歷山大圖書館的圖書管理員和館長。他跟阿基米德是好朋友。約西元前240年,他根據亞歷山大港與賽印(現在埃及的亞斯文)之間不同的正午時分的太陽高線及三角學計算出地球的直徑。當然,他的這種計算是基於太陽足夠遠而將其光線看成平行光的假設為根據的。 他知道在夏至(每年6/21)日正午時分從北回歸線上看,太陽正好在天頂的位置;亞斯文其實是在回歸線稍北。他還測量出在他的家鄉亞歷山大港,這個時候太陽應該在天頂以南7°。這個角度是7/360 個整園。假設亞歷山大港在亞斯文的正北(實際上亞歷山大港在亞斯文偏西一個經度)。他推斷出亞歷山大港到亞斯文的距離一定是整個地球圓周的7/360。從商隊那裡可以知道兩個城市間的實際距離大概是5000視距(stadia,又譯作「斯塔德」、「斯泰特)。他最終確立了700視距為一度。從而得出一個圓周為252,000視距。雖然視距的確切長度我們目前已經無法考證(現在雅典的視距一般是指185米),但是現在普遍認為他推斷出的距離應該在39,690千米到46,620千米之間。經過兩極的確切地球圓周是40,008千米。 雖然我們已知地球的周長,但我們可藉助現代科技及製作道具,想像一下自己身處西元前200多元前的埃及,感受一下埃拉托斯特尼(Eratosthenes)的方法來測量地球的周長。
點閱數4916
下載數26
修改日期:2013-11-29
拆拆合合,做做看-資源代表圖
web 拆拆合合,做做看
李智能/教育網路中心國小1年級~國中9年級
四年級下學期數學課本,觀察正四方體的展開圖,書商除了提供平面的紙板輔導教具外,也提供工程智慧片,要我們用紙盒透過分解與還原的過程,認識正方體的展開圖和表面積,但是在拆解紙盒、黏合紙盒的過程中,比較不方便。我們都運用工程智慧片來操作,老師要我們折折看:六片正方形的工程智慧片要如何連接才能組合成正方體?還有哪些連接方式也能組合成正方體?
點閱數1097
下載數65
修改日期:2013-11-25
曼妙多姿的四邊形-資源代表圖
web 曼妙多姿的四邊形
李智能/教育網路中心國小1年級~國中9年級
三年級的時候,我們在學習「四邊形與三角形的面積與周長」單元中,曾經用符合任何二支的長度,加起來大於第三支的三支吸管,來圍成一個三角形。發覺三角形形狀雖然改變,但是它的面積卻不會改變。到了四年級下學期,我們又再學習四邊形的面積。發覺四邊形四個邊長固定,但是它的面積會隨形狀改變而改變,我們覺得很奇怪。到了五年級時,雖然我們再深入的學習四邊形,對於邊長一樣,形狀不一樣,面積就不一樣的疑惑還沒解開,於是便去請教老師,在老師的指導下,與同學一同去研究、操作與探討相關四邊形的問題。
點閱數1082
下載數132
修改日期:2013-11-25
英九的秘積-資源代表圖
web 英九的秘積
李智能/教育網路中心國小1年級~國中9年級
「九九乘法」是一個神奇又方便的東西,它讓我們學習數學很方便,而且是基礎。它有一些好玩又神奇的地方,讓我們來研究研究吧!遇到面積問題時,也是需要運用乘法,「長方形面積= 長 × 寬」乘法讓求面積的時候過程簡化了許多,那有沒有什麼方法可以讓多位數乘法簡化呢?
點閱數1298
下載數77
修改日期:2013-11-25
發票發不發-資源代表圖
web 發票發不發
李智能/教育網路中心國小1年級~國中9年級
觀察及探討統一發票的對獎規則,計算發票各獎項的出現次數,將中獎次數與中獎獎金作運算,利用統計學中平均的概念,以推估統一發票在兌獎前的價值幾許。
點閱數395
下載數30
修改日期:2013-11-25